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Abstract. V,Ni,,Si, has a very unusual reciprocal lattice, closely related to that of y-brass 
but requiring a minimum of six basis vectors in order to index all observed reflections. It 
can be decribed formally as a three-dimensional, incommensurately modulated P-brass 
structure. Characteristic satellite extinction conditions observed at (00 1) zone axes imply 
the presence of certain six-dimensional super-space group symmetry operations which can 
be used to develop a modulated structure approach to the structural description of V6SiI6Si7 
and to provide a structural comparison with y-brass. 

1. Introduction 

Recently we have reported the results of a detailed electron diffraction study of the 
crystallography characteristic of a rather remarkable material, namely rapidly solidified 
V6Ni16Si7 (Feng et a1 1989). Its reciprocal lattice exhibits conventional cubic point group 
symmetry but requires a minimum of six basis vectors in order to index all the observed 
reflections. Cubic point group symmetry splits this set of six basis vectors into two sets 
of vectors-a first set of three symmetry-related vectors defining an FCC, ‘average 
structure’ reciprocal lattice (and thus labelled (1 lo)*,  (0 1 1)” and (1 0 1)* respectively) 
followed by a further set of three symmetry-related vectors (q l  = 4(114)* + ~ ( 1 1  l )* ,  
q2 = +( l i4 )*  + &(lil)* and q3 = i(TT4) + &(Til)*)  corresponding to independent, 
incommensurate, primary modulation wavevectors of the BCC, average structure (Perez- 
Mato er a1 1986). There are, of course, six equivalent {llO}*-type and 12 equivalent 
{+( 11 4) + E (  11 l)}*-type reflections for cubic point group symmetry. Only six of these 
18 ‘basis vectors’, however, are linearly independent. (Note that in our earlier paper 
(Feng et a1 1989), it was incorrectly asserted that seven of these 18 ‘basis vectors’ were 
linearly independent. Note also the different notation used to describe these basis 
vectors in that paper). Any reflection can be indexed as an integer linear combination 
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Figure 1. ( a )  The experimentally observed (00 l)l~c.c zone axis selected area diffraction 
pattern (SADP) of rapidly quenched V,Ni,,Si,. ( h )  The corresponding simulated SADP (see 
text for a description of the simulation). Note the experimental absence of reflections of 
the type (h.  k ,  0, m. -m + n. -n) where m + n f 24 (shown by arrow in ( h ) ) .  

of these six basis vectors. Following de Wolff et a1 (1981), a general reflection can be 
indexed as 

3 

( h ,  k ,  1, m,, m2, m3,) = ha* + kb* + lc* + x miqi 
i =  I 

where h ,  k ,  I, and the m, are integers and U* = ( loo)* etc. (see figure 1). The FCC 
reciprocal lattice of the average structure implies the extinction condition 
F(h, k ,  I ,  m , ,  m2, m3) = 0 unless h + k + I = 2n. 

Figure 2(a) shows selected area electron diffraction patterns of the major zone axes 
encountered on tilting from an (00 I),,,- to a (1 1 I),,,-type zone axis (patterns A to D) 
and from an (00 l),cc- to an (0 1 I),,,-type zone axis (patterns A, E, F) .  Figure 2(b) 
shows a corresponding simulation of the diffraction patterns to be expected if the six 
equivalent { 1 00}*- and 12 equivalent {a( 1 14) + E( 1 1 I)}*-type vectors are used as ‘basis 
vectors’. The larger the circlc size of a particular reflection, the lower the order of the 
minimum linear combination of these 18 basis vectors required to reach its position in 
reciprocal space. In general, agreement is excellent except between the experimental 
and simulated (00 l),,,-type zone axis diffraction patterns (see figure 1). (The apparent 
extra reflections (arrowed) in patterns D and E of figure 2(a) are due to reflections which 
are very close to, but not quite in ,  the plane perpendicular to the zone axis orientation. 
They occur in the experimental pattern due to the shape transform effect.) The absence 
of approximately half the reflections to be expected at (OOl),cc-type zone axes is a 
characteristic satellite extinction condition, the origin and structural implications of 
which will be spelt out below. 

Experimentally, the BCC unit cell has a lattice paramater a - 2.95 A while the incom- 
mensurability parameter E - 0.028. Isomorphous phases have been found to occur in a 
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Figure 2. ( a )  SADPS o f  the major zone axes encountered on tilting from (001) to a ( 1  1 I )  
zone axis (patterns A to D) and from a (00 1 )  to a (0 1 1 )  zone axis (patterns A. E. F )  
along with ( b )  the corresponding simulated SADPS. Thc zone axis labelling in ( b )  is with 
respect to the BCC average structure. 
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range of rapidly quenched, ternary, transition-metal-silicon alloy systems (Feng e f  a1 
1987). The incommensurability parameters, E ,  vary correspondingly. 

All such structures can be described as three-dimensional, incommensurately modu- 
lated, BCC structures (see, for example, Perez-Mato eta1 1986). Unlike most known type 
I modulated structures, however, it is not experimentally possible to separate ‘satellite 
reflections’ from ‘matrix reflections’ (i.e., those corresponding to the underlying average 
BCC parent structure) on the basis of intensity, even close in to the origin of reciprocal 
space (see figure 1). This feature of the reciprocal space of this remarkable family of 
materials seems more closely related to the reciprocal lattices of the (icosahedral, 
decagonal, . , .) quasi-crystalline phases. 

It is interesting to note that the apparent space group symmetry (and even cell 
dimensions) of the average structure is identical to that for disordered @-brass (space 
group ImSm, a - 2.95 A). Similarly the reciprocal lattice of v 6 ~ i 1 6 s i 7  is very closely 
related to that of y-brass. The structure of y-brass can, of course, be derived from 
a disordered @-brass parent structure via appropriate compositional and displacive 
modulation, as will be shown below. The appropriate ‘primary’ modulation wavevectors 
are again q l ,  q2 and q3, but this time with E put to zero. The purpose of this paper 
is threefold: firstly, to explain the existence of the characteristic satellite extinction 
conditions observed at (00 1) zone axes in terms of six-dimensional super-space group 
symmetry operations; secondly, to use these symmetry operations to develop a modu- 
lated structure approach to the structural description of V6Ni16Si7; thirdly, to provide a 
structural comparison of V6Ni16Si7 with y-brass. 

2. Characteristic satellite extinction conditions and 6~ super-space group symmetry 

Characteristicsatellite extinction conditions, such as F(Gbasal + m(ql - q2) + n(q2 - q3) )  
= F(h, k ,  0 ,  m, -m + n ,  - n )  0 = unless h + k = 2p, m + n = 2q where m ,  n ,  p 
and q are all integers, occur at all three (OO1)Bcc-type zone axes (see figure l(a)). 
Such characteristic satellite extinction conditions require the existence of super-space 
group symmetry operations {ox,  O / t l ,  z1 - 1, i - tl), {oy,  01x2, - ~ 2 , 1 -  ~ 2 )  and 
{oz ,  OIz3, z3 - 4, z3} (using the notation of Perez-Mato et a1 1986). Another, and 
equivalent, way of writing such super-space group symmetry operations is in the form 
{oxlTl}, {oy/T2} and {o,lT3} (Withers 1989) where T I ,  T2 and T3 are Bravais lattice 
symmetry translations of the average structure satisfying the following constraints: 

-41 * T1 = t1 

-42 - TI = tl - 1 
-q3 T 1  = 1 - Z 1  

-41 * T2 = t 2  

-42 * T2 = - t 2  

-43 . T2 = f - ~2 

-41 * T3 = t 3  

-42 . T3 t 3  - 1 
-43 * T3 = t 3  . . . 

(1) 
That such super-space group symmetry operations give rise to the observed sat- 

ellite extinction conditions can be shown as follows. Consider any arbitrary atom in 
the structure at r = xu + yb + zc. There must then exist an identical atom in the 
structure at {o,lT3}r = r f  = xu + yb - zc + T3. The separation of these two equivalent 
atoms is thus given by Ar = r f  - r = -2zc + T3. The structure factor, F(k) ,  of any 
reflection k is then proportional to 1 + exp(-i2nk. Ar).  In particular: 

F(Gbasal f m(q1 - 42) + n(q2 - 43)) 

cc 1 + exp[-i2n(Gbasal + m(q1 - 4 2 )  + n(q2 - 43)) * (-2zc2 + T3)I 
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= 1 + exp[-in(-m + n )  = 0 

unless m + n = 2q as observed. The satellite extinction conditions thus obtained are 
the same as those obtained via application of equation (17) of Perez-Mato et a1 
(1986). 

Such six-dimensional super-space group symmetry operations severely constrain 
the form of compositional and/or displacement eigenvectors associated with the 
various ‘harmonics’ of the primary modulation wavevectors, as will be shown below 
for the strongest modulation harmonics. 

3. A representation theory approach to the structural description of rapidly quenched 
V6Ni16Si7 

A representation theory approach to the structural description of rapidly quenched 
V6Ni16Si7 requires the definition of an underlying, unmodulated (or prototype) parent 
structure, the incommensurate modulation of which gives rise to the resultant modu- 
lated structure. The various incommensurate modulation wavevectors then need 
to be specified, followed by the transformation properties of their corresponding 
compositional and displacement eigenvectors under the symmetry operations belong- 
ing to the appropriate little group (see, for example, Bradley and Cracknell 1972). 
Having specified the form of the eigenvectors associated with each of the various 
modulation harmonics, one must finally consider how the modulated structure as a 
whole transforms under a general symmetry operation of the parent structure. 

3.1. The parent structure 

The underlying average structure of rapidly quenched V6Ni16Si7 is BCC with a lattice 
parameter -2.9 A. The 4 mm, 3 m and 2 mm whole pattern symmetries observed in 
convergent beam electron diffraction patterns taken down the four-, three- and two- 
fold axes (see Feng et a1 1989) suggests an average structure space group symmetry 
the same as that of disordered /?-brass, namely Im3m. In turn, the (V5/2)a - 2.5 A 
body-centring separation distance implies that there can only be one atomic site per 
primitive unit cell of the average structure-at O , O , O .  Thus the prototype parent 
structure appears to be the same as that for disordered /?-brass except that the atomic 
scattering factor of this one average atom is given by 7, - h (6fv + 16fNi + 7fsi), 
and not yp - h(1OfCu + 16fin) as in the case of disordered /?-brass. The resultant 
modulated structure can now be described in terms of a summation of compositional 
and displacive modulations of this prototype parent structure. Such modulations, for a 
particular modulation wavevector q,  take the form: 

and 

In the above equation, 6f,(T) represents the periodic deviation from its average 
value, f,, of the atomic scattering factor of the pth atom site in the Tth unit cell 
while p,(T) represents the atomic displacement away from its average position of 
the pth atom site in the Tth unit cell. 
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The number of higher-order harmonic modulations which will need to be included 
in order to obtain a good approximation to the real structure is clearly going to be 
significant due to the obviously large amplitudes of the primary (q l ,  q2 ,  q3,  q4)  
modulation harmonics. Nevertheless, experimentally, it is clear that the amplitude 
associated with the various modulations does drop off sharply with increasing order. 

3.2. Modulation wavevectors 

Although cubic m3m point group symmetry gives rise to t 1 2  equivalent wavevectors 
of the form 4{114}* + ~{111}*, only three of these wavevectors are rationally inde- 
pendent, i.e., only three are required, in conjunction with the average structure 
reciprocal lattice basis vectors, in order to index all the observed reflections. These 
primary modulation wavevectors can be chosen to be q1 = 4(114)* + ~ ( 1 1 1 ) * ,  q2 = 
4(1T4)* + r ( l i l ) *  and q3 = S(i i4)* + &(Ti l )* .  Of the 12 equivalent wavevectors, 
q4 = 4(i14)* + & ( i l l ) *  = q1 - q2 + q3 and hence is not rationally independent. The 
remaining eight wavevectors can be obtained by appropriate linear combinations of 
q l ,  q2, q3 and q4 with reciprocal lattice vectors of the BCC average structure, e.g., 
q3 - (101)* = @ i l ) *  + &(Ti l )*  etc., and hence are also not rationally independent. 

Because E # 0 for V6Nil,Si7, there exist an infinite series of higher-order harmonic 
modulation wavevectors, e.g. qi ? qj, 2qi, . . .. In the case of commensurately modu- 
lated y-brass, however, all higher-order harmonic modulation wavevectors become 
equivalent to one of the four qis or to one of the nine, ‘second harmonic’, modulation 
wavevectors of the form (qi * qj). 

Such (qi * qj) modulation wavevectors fall into two separate, symmetry-related 
classes. The first class consists of 

q 5  3 q 2  - 43 = (4 + &)(200)* 

47 = q1 + q3 - (002)* = (4 + &)(002)*. 
46 41 - 42 = (4 + &)(020)* 

The second class consists of the six wavevectors: 

qs = q1 - 43 = (4 + &)(220)* 

q9 = q1 + 44 - (002)* = (4 + &)(022)* 

410 = q1 + 42 - (002)* = (4 + &)(202)* 

411 = 42 - q 4  = (4 + &)(220)* 

412 = -q2 - q3 + (002)* = (4 + &)(022)* 

413 q3 + 44 = (4 + ~) (202)*  

In the following section, the general form of compositional and displacive modu- 
lations associated with these 13 strongest modulation harmonics will be derived and 
the above super-space group symmetry operations used to determine their relative 
phasing. A Fourier decomposition of the known y-brass structure in terms of modu- 
lations associated with the same 13 modulation wavevectors provides an illuminating 
structural comparison. 
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Table 1. Multiplication table for the little co-group associated with the 'primary' modu- 
lation wavevectors, q,  . . . q4. 

E Cg Odi 

R ,  1 1 1 
R2 1 1 1 
R3 2 1 0 

3.3. Irreducible representations and modulation functions assocated with ql, . , . , q13 

3.3.1. Irreducible representations associated with the 'primary' modulation wavevectors 
qz, q2, q3, q4. The little co-group associated with q l ,  q2,  4, and 4, is 3m(C,") = E, Cg, 
bdi (see Bradley and Cracknell 1972). The corresponding multiplication table is given 
in table 1. 

Compositional modulation is symmetry constrained to only be associated with an 
R1 representation. The m3m point group symmetry of reciprocal space, in con- 
junction with the existence of the above super-space group symmetry operations, 
ensures that displacive modulation is likewise associated only with an R,  irreducible 
representation. the corresponding displacement eigenvectors are given by 

eR1(ql) = (el  , el > e , )  eRl(q2) = ( e 2 , G ,  e21 

where the complex amplitudes ej (describing atomic shifts along the a,  b and c 
axes) = E,* exp(iO,,) (see equation (2) above). 

The compositional and displacement modulation functions associated with these 
symmetry-equivalent, primary modulation harmonics are therefore given by 

6f , (T)  =f,[all cos(2nq1 - T + O i l )  + aI2  cos(2nq2 e T + e;,) 
+ a13 c0s(2nq3 T + e;,) + a14 C O S ( ~ J T ~ ,  e T + e;,)] (3) 

and 

U J T )  = Ell(a + b + C) cospnq,  T + el l )  + - b + C) cos(2nq2 e T + e12) 
+ &,, ( -U - b + C) C O S ( ~ X ~ ,  * T + 613) 

+ E , ~ ( - u  + b + C) C O S ( ~ J C ~ ,  * T + 614). (4) 

Application of {oxlTl},  {oylT2} and {a,lT,} to 6 f J T )  requires: 

( 5 )  all  = a12 = a13 = a14 = a l  

and 
e;, = e;, + 2nz1 = e;, + 2nz2 = -e;, + 2 m 3  

e;, = e;, - 2nz ,  + n = e;, - 2 n t 2  + x = -ei2 + 2 n t 3  

e;, = e;, - 2nzI  = e;, + 2 n z ,  + JG = -e;, + 2nz3 + ?c. 

e;, = e;, + 2 ~ x 1  - JT = e;, - 2~tzZ = -0i4 + 2 n t 3  - JL 

(6) 
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Table 2. Symmetry decomposition of the known structure of y-brass in terms of com- 
mensurate modulations of a P-brass-like parent phase. 

COS e l  = -0.0454 
sin e l  = -0.0346 

~2 = 0.0174 
~3 = -0.0194 

a l  sin e l  = (-3q3fzn + 3~3fc,)/(10fc, + 16fin) 

41 42 43 44 45 46 47 48 49 410 411 412 413 

a, al a1 al a l  a2 a2 a2 a3 a3 a3 a3 a3 a3 
0.v 01 -01 81 -01 0" 0" 0" 0" 0" 0" 0" 0" 0" 
E, El E1 - E l  -E1  E* 0 0 E3 E ;  E 3  E3 - E ;  - E 3  

exx el 180" - el  e l  1800 - e, 900 +90" 0" +90" +90" 0" +90" 
E,y E l  -El  - E l  81 0 E 2  0 E 3  E 3  E ;  - E 3  E 3  - E ;  

8.). el 180"- el el i80°- e, 90" +90" +90" 0" +90" +90" 0" 
E r ,  E1 E1 E1 E ,  0 0 E 2  E ;  E3 E 3  - E ;  - E 3  E 3  

eKz el  180"- e l  e ,  180"- e l  90" 0" +90° +90" 0" +90" +90" 

Application to u,(T) requires: 

and 

ell  = 014 + 2xntl = e12 + 2 n t 2  = -013 + 2nz3 + n 
e12 = 013 + ~ J G T ~  - n = ell - 2nz2 = - 0 1 4  + 2?tz3 

013 = e12 - 2 ~ t . t ~  + JG = 014 - 2nz2 + n = -el1 + 2nz3 + z 

014 = e,, - 2nd~~ = 013 + 2nz2 + n = -el2 + 2n t3 .  

Note that (q l  + q3) - (q2 + q4) = 0. Thus ( O i l  + 13;~) - (0i2 + e;,) (= JG) and 
(el1 + 613)  - (el2 + 614)  (= n) are invariant under an origin shift by a Bravais lattice 
translation vector, unlike the individual phase angles themselves. Note further that 
the values of these invariant combinations of phase angles are exactly as would be 
expected from a Landau theoretical point of view (see section 4). 

For comparison purposes, the Fourier decomposition of the known Ia3m y-brass 
structure in terms of compositional and displacive modulations associated with the 
q l ,  . . . q13 modulation wavevectors is given in table 2. Thus, for example: 

(8) 

~ 1 1  = ~ 1 2  = ~ 1 3  = ~ 1 4  = ~1 = -0.0571 ( ] E l l  E 0.168 A) 
ell = 613 = 37.250 

eI2 = 014 = 1800 - 37.250 

and 

in the case of y-brass. 
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Table 3. Multiplication table for the little co-group associated with wavevector q6. 

Table 4. Multiplication table for the little co-group associated with q8. 

Rl 1 1 1 1 
R2 1 - 1 1 
R3 1 1 
R4 1 1 

- 

- 

3.3.2. Irreducible representations associated with the second harmonic modulation 
wavevectors q5, 46, q,. The little CO-group associated with q5 ,  46, q7 is 4mm (C,,). In 
the case of 46, this little co-group is given by E, C2y,  C $ ,  ax, a, ad, and a d ,  (see 
Bradley and Cracknell 1972). The corresponding multiplication table is given in 
table 3. 

The observed m3m point group symmetry of reciprocal space again ensures that 
compositional and displacive modulation can only be associated with the totally 
symmetric RI  irreducible representation. The displacement eigenvectors are given 
by 

eR1(q5) = (el ,  0,O) eR1(q6) = (0, e2, 0) eR1(q7) = ( O , O ,  e31 
while the corresponding compositional and displacive modulation functions are given 
by 
s ~ , ( T )  = f,[a2, cos(2nq5 T + ei1) + a22 cos(2nq6 - T + e;2) 

+ a23 C O S ( ~ J T C ~ ~  - T + e;,)] (9) 
and 
U , ( T )  = ~ 2 l a  COS(2Xq5 * T + 821) + ~ 2 2 b  cos(2nq6 * T + 6 2 2 )  

+ ~ 2 3 ~  C O S ( ~ Z ~ ~  * T + 023). (10) 
Application of the known super-space group symmetry operations, however, 

requires that a21 = a22 = aZ3 = 0 and = ~ 2 3  = 0 ,  i.e., modulations associated 
with q s ,  46, q7 are specifically forbidden for V6Ni16Si7. In the case of y-brass, however, 
such is not the case (see table 2). 

3.3.3. Irreducible representations associated with 48, q9, ql0, qll ,  q12, qI3. The little co- 
group associated with (4 + E) {220}*-type modulation wavevectors (Le., q g ,  . . . q13) 
is mm2 (CZ,). In the specific case of q8, it is E, C2a, a,, adb. The corresponding 
multiplication table is given in table 4. 

= 
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The observed m3m point group of reciprocal space, in conjunction with the super- 
space group symmetry operations of section 2, again ensures that compositional and 
displacive modulation can only be associated with the R, irreducible representation. 
(In the case of y-brass, compositional and displacive modulation associated with both 
RI  and R4 irreducible representations occur (see table 2), i.e., both irreducible 
representations are consistent with the I43m resultant space group symmetry of y- 
brass). The displacement eigenvectors for R,  symmetry are given by 

eR%) = (e, , e, , 0) eR1(q9) = (0, e2, e,) eR1(qlo) = (e3,0, e31 

eR1(ql,) = (e,, 2 4 , O )  eR1(q12) = (0, e5 , 2s) eR1(q13) = (26 ,  O, e6) 

The corresponding compositional and displacement modulation functions are thus 
given by 

d f , ( ~ )  = C O S ( ~ R ~ ,  a T + e;,) + a32 cos(2nq9 e T + e;,) 
cos(2nq,, 0 T + 

+ a36 cos(2nq13 . T + e;,)] 
+ a33 cos(2nqlo T + 64,) + 
+ a,, cos(2nq1, T + 

and 

Application of the above super-space group symmetry operations to df,(T) 
requires that 

a31 = a34 a32 = a35 a33 = a36 

and 

e;, = -e;, + 2 4 2 r 1 )  + = e;, + 2 4 2 ~ ~ )  + R = e;, 
e;, = e;, = -e;, + 2422, )  + R = e;, + 2 4 2 ~ ~ )  + n 
e;, = e;, + 2 4 2 2 , )  + R = e;, = -e;, + 2z(2r3)  - R 

e;, = -ei1 + 2 4 2 z l )  + n = e;, - 2 4 2 ~ ~ )  - n = e;, 
e;, = e;, = -e;, + 2422, )  + R = e;, - 2 4 2 ~ ~ )  - R 

e;, = e;, - 2n(2z1) - = e;, = -ei3 + 2 4 2 ~ ~ )  + R. 
Application to U J T )  requires 

&3l = E34 &32 = E35 &33 = E36 

and 

e,, = - 6 3 4  + 2 4 2 ~ ~ )  = e,, + 2 4 2 ~ ~ )  + n = 031 

e,, = e32 = -e35 + 2422, )  = + 2n(2r3) + R 
6 3 3  = 6 3 6  + 2n(2t1) - n = e 3 3  = - 6 3 6  + 2n(2t3) 
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1 3 ~ ~  = -631  + 2n(2t1) = 631 - 2 4 2 ~ ~ )  - n = 634 

635 = 635 = -632 + 2 4 2 ~ ~ )  = 632 - 2n(2t3) + n 
636 = 633 - 2n(2t1) f n = 636 = -633 + 2n(2T3). (16) 

Note that invariant phase angle combinations again take values that might be 
expected from simple Landau theoretical arguments (see section 4) e.g. 

(48 - 411) - (49 + 412) = 0 (631 - 634) - (632 + 6325) = n. 
Similarly 

41 - 43 - 48 = ell - 613 - 631 = -7~12. 

4. Landau theoretical considerations 

It is possible to interpret simply many of the above phase relationships with the use 
of a Landau free energy expansion. In constructing a Landau free energy expansion 
purporting to represent the free energy difference between the modulated and 
unmodulated (i.e. disordered P-brass) structures, we follow Landau by expanding in 
terms of order parameters. The appropriate order parameters for each independent 
modulation wavevector are the complex amplitudes of the corresponding com- 
positional and displacive modulations, which we label P ( q )  and Q(q)  respectively 
(see, for example, Moncton et a1 1977). We will not attempt to construct a general 
such free energy expansion but concentrate upon the lowest-order phase-dependent 
terms. 

In general, a free energy term AF(") = ReBQ(ql) . . . Q(q,) will exist if 
q1 + . . . + qn = G ,  where G is an allowed reciprocal lattice vector of the unmodulated 
parent structure (see Kwok and Miller 1966). The free energy coefficient, B ,  is in 
general complex but the requirement that the free energy expansion should be 
invariant under the space group symmetry operations of the parent structure (see, 
for example, Jacobs and Walker 1980) will mean that such coefficients are usually 
either real or imaginary. 

4.1. Landau theoretical considerations applied to rapidly quenched V6Ni16Si7 ( E  # 0). 

The lowest-order phase-dependent free energy terms are Re BIQ(ql) 
Q(qd*Q(q3)Q(q4)* and Re  B2P(4i>P(42>*P(q3>P(44)*. Because P(q) + P(q)* and 
Q(q)+ -Q(q)* under inversion (see equation (2)), both coefficients B,  and B2 are 
real. Thus the above terms reduce to 

B I E f  - e12 + - 614) 

and 

B2af coS(6;, - e;, + 6;3 - q4). 
For B ,  and B2 positive, such free energy terms are minimised for 

- e;, + e;, - 6i4) = n, just as required by the (el1 - O I 2  + 613 - 014) = n, and 
superspace group symmetry operations { o X ~ T l } ,  {a , /T , }  and {a,/T3}. 
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Similarly, consider the lowest-order free energy terms capable of inducing the 
displacive component of the second harmonic modulations q5,  q6, q7: 

A F =  Re C I [ Q ( ~ S ) * ( Q ( ~ ~ ) Q ( ~ ~ ) *  + Q(qi>Q(q4>*> 

+ Q(46) * (Q(q i 

+ Q(q,)*(&(qi)Q(q3) + Q(q2>Q(q4>)1. 

* + Q(q3) * Q(q4)) 

Invariance of the free energy under inversion implies C1 is purely imaginary. Thus 

A F =  C1~:~,[s in(e12 - 613 - 021) + sin(Oll - 614 - e21) + sin(OI1 - eI2 - e2,) 
+ sin(-e13 + 614 - + sin(Oll + el, - 023) + sin(B12 + 614 - e,,)] 

Because (el1 - el, + 6 1 3  - 614) = JC, [ ] = 0 and hence there is no free energy to be 
gained by having a non-zero amplitude for these (q5, 46, q7) second harmonic displa- 
cive modulations, i.e., one would expect = 0. Again this is precisely what the 
super-space group symmetry operations require. A similar argument holds for the 
compositional component of the modulations associated with modulation wavevectors 

The lowest-order free energy terms capable of inducing the displacive q8, . . . , 413 
45, 46 and 47, 

modulations are: 

AF(4) = Re C,[Q(qi>Q(q2)Q(qio)* + Q(qi)Q(q3)*Q(q8>* + Q(qi)Q(q4)Q(qg)* 

+ Q(q2 ) Q(q3 1 Q(q 12 1 + Q(q2 1 Q(q4 1 * Q(q 11 1 * + Q(q3 1 Q(q4 1 Q(q 13 1 *I. 
Invariance under inversion again implies an imaginary C2. Thus 

AF(4) = ~ C , ~ E ? [ E ~ ~  sin(Oll + 012 - 033) + ~ 3 1  sin(OI1 - 613 - 631) 

+ ~ 3 2  sin(OIl + 614 - 

+ ~ 3 1  sin(8,, - 614 - e34) + 
+ ~ 3 2  sin(B12 + 613 + e 3 j )  

sin(eI3 + 014 - & , ) ] a  

Thus one would expect the arguments of all six sine functions to equal either +n/2 
or -n/2. Judicious use of equations (8) and (16) shows that this is exactly what 
application of the super-space group symmetry operations {oxlTl}, {uylT2} and {o,lT3} 
requires. 

The compositional equivalent of the above free energy term is given by: 

~ c ; l a : [ a ~ ~  cOs(e;, + e;, - e;,) + a31 cos(e;, - e;, - e;,)  + a32 cos(e;, + e;, - e;,) 
+ a32  COS^;, + e;, + e;5) + a31  COS(^;, - 6;4 - ei4) 

+ a33  COS(^;, + e;, - e&)]  

(The reason that cosine functions appear instead of sine functions is that C; is real 
rather than imaginary). Thus one would expect the argument of all six cosine func- 
tions to equal either 0" or 180°, dependent upon the sign of C; a3,. Judicious use of 
equations (6) and (14) again shows that this is precisely what the super-space group 
symmetry requires. Thus many of the experimental observations seem to be well 
described within the framework of such a free energy expansion. 
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4.2 .  Landau theoretical considerations applied to y-brass (E = 0) 

For the commensurate ( E  = 0) y-brass case, there exist additional low-order free 
energy terms of the form 

ReA1(Q(q1I3 + Q(q2)3 + Q ( d 3  + Q(q4I3) 

ReA2(P(q1I3 + P(q2I3 + P ( d 3  + P(qd3). 

and 

Invariance under inversion implies A l  is purely imaginary and A2 real. Thus the 
above terms reduce to 

-A,E:{sin 3011 + sin 3012 + sin 3013 + sin 3OI4} 

A,a :{~os38;~  + COS 3ei2 + COS 3e;, + COS 30 ;~ ) .  

and 

Experimentally, O I 1  = 6 1 3  = 37.25" and 012 = 6 1 4  = 180" - 37.25". 
Thus 

sin 301, = sin 3812 = sin 3813 = sin 3814 = sin(90" + 21.75") 

while 

cOs(el1 - o12 + 013 - 014) = cos(i80° - 310). 

The experimentally observed values of the primary modulation phase angles can be 
understood in terms of a trade-off between the above free energy terms and the 
fourth-order cos(Oll - 012 + O I 3  - 614) term. The above free energy terms would be 
minimised for O l 1  = 613 = 30", OI2  = 614 = 180" - 30" whereas the cos(Oll - 
O I 2  + 613 - 014) term is minimised for O , ,  = 613 = 45", 012 = 614 = 180" - 45". 
Experimentally, the compromise choice of 37.25" occurs. That (e1, - 012 + 613 - OI4) 
no longer exactly equals n implies that second-order compositional and displacive 
modulations characterised by the modulation wavevectors qs,  46 and q7 no longer 
need have zero amplitude (i.e., E ~ ,  a2 # 0)-as observed in y-brass (see table 2). Thus 
the experimental differences in phase angle relationships between rapidly quenched 
V6Ni16Si7 and y-brass can also be easily rationalised within the framework of a 
Landau-like free energy expansion. 

5. Conclusions 

V6Ni16Si7 is representative of a family of rapidly quenched transition metal-silicon 
alloy systems whose reciprocal lattices are closely related to that of y-brass. In real 
space, the y-brass structure consists of a BCC packing of clusters formed of bi-capped 
stellar quadrangulae. Structures which can be described in terms of the regular 
packing of clusters based on stellar quadrangulae are quite well known in solid state 
chemistry (see, for example, Nyman and Andersson 1979, Hyde and Andersson 
1989). Presumably the local structure of rapidly quenched V6Ni16Si7 must also consist 
of such clusters. Their size, distribution and connectivity must, however, await the 
results of a full x-ray, structure refinement when, and if, a large enough single 
'crystal' can be grown. 
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